Search results

1 – 10 of 50
Article
Publication date: 19 June 2007

G. Miano, G. Rubinacci and A. Tamburrino

The paper is focused on the numerical modelling of the interaction between electromagnetic fields and metallic nanoparticle.

Abstract

Purpose

The paper is focused on the numerical modelling of the interaction between electromagnetic fields and metallic nanoparticle.

Design/methodology/approach

A full‐wave solution of the field problem is modelled in terms of an integral equation where the unknown is the displacement current. For treating nanoparticles having sizes smaller than the relevant wavelength, particular care is devoted to the choice of the discrete representation of the unknown in view of the condition number of the resulting linear system of equations.

Findings

A critical analysis of the issues to be considered for developing a proper numerical model of the problem is presented. Specifically, it is shown that the electric field inside the nanoparticle is not purely irrotational, as usually assumed in the widespread models based on the electrostatic approximation.

Originality/value

The proposed formulation is applied for the first time to the problem of evaluating the interaction between electromagnetic fields and metallic nanoparticle.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2007

M. de Magistris, M. Morozov, G. Rubinacci, A. Tamburrino and S. Ventre

The paper aims to apply an innovative inversion method to the problem of imaging (location, direction and size) of concrete rebars by means of eddy current measurements.

Abstract

Purpose

The paper aims to apply an innovative inversion method to the problem of imaging (location, direction and size) of concrete rebars by means of eddy current measurements.

Design/methodology/approach

An accurate numerical model of the probe‐rebar interaction, including eddy currents and skin effect, is considered. The inverse problem is approached with a very efficient inversion procedure previously introduced in a different context.

Findings

A critical analysis of the issues to be considered for the quantitative imaging of rebars is given, and the possibility of relevant simplifications in the numerical model outlined, allowing the development of an accurate and computationally efficient method.

Originality/value

The proposed formulation is applied for the first time to the problem of rebars imaging. Experimental tests have been carried out to validate the numerical model and its underlying hypothesis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2001

R. Albanese, G. Rubinacci, A. Tamburrino, S. Ventre and F. Villone

In this paper we present a fast method for the computation of matrix‐by‐vector products arising from the discretization of an integral formulation of the three‐dimensional eddy…

Abstract

In this paper we present a fast method for the computation of matrix‐by‐vector products arising from the discretization of an integral formulation of the three‐dimensional eddy current problem. The approach is based on the distinction between short and long range interactions. The features of the method will be discussed with reference to some numerical examples, also in view of an extension to the nonlinear case of superconductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1999

R. Albanese, G. Rubinacci, A. Tamburrino and F. Villone

In this paper a method is presented for an efficient solution of the direct problem (find the scattered field for a given thin crack and driving field) in the time domain. This is…

Abstract

In this paper a method is presented for an efficient solution of the direct problem (find the scattered field for a given thin crack and driving field) in the time domain. This is a fundamental step in any non destructive evaluation problem. Two different approaches, one in the time domain and the other based on Fourier analysis, are used and compared with reference to a configuration for which some experimental results are available. The advantages and drawbacks of the two approaches are briefly discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 November 2011

Raffaele Albanese, Flavio Calvano, Giorgio DalMut, Fabrizio Ferraioli, Alessandro Formisano, Fabrizio Marignetti, Raffaele Martone, Guglielmo Rubinacci, Antonelle Tamburrino and Salvatore Ventre

The purpose of this paper is to present a numerical approach for the computation of 3D magnetic fields in rotating electrical machines. The technique is suitable for the…

Abstract

Purpose

The purpose of this paper is to present a numerical approach for the computation of 3D magnetic fields in rotating electrical machines. The technique is suitable for the computation of flux densities and forces in the end windings of large synchronous turbo generators (TG).

Design/methodology/approach

The magnetostatic FEM model of the generator end windings is carried out for different displacements of the rotor axis to the stator magnetomotive force (MMF) axis. The method is based on a parallel integral formulation allowing to substantially reduce the computational effort.

Findings

The computational model requires only the discretization of magnetic materials and conductors and is fast enough for carrying out 3D analyses on a time scale fast enough for the needs of the designer. As far as the present application is concerned, the analysis of a synchronous generator in the class of 300‐400 MVA has shown that the most stressed elements of the armature conductors are those closer to the stator ends. The study demonstrates that the maximum stress component on the end windings is axial and is achieved when the MMF is aligned to the direct axis.

Originality/value

The present approach combining an efficient integral formulation, the sparsification of the relevant matrices and the parallel implementation of the related algorithms gives rise to an original computational tool that allows a more accurate description of the machine in comparison to other numerical simulations that can be found in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2017

Stephan Mühlbacher-Karrer, Juliana Padilha Leitzke, Lisa-Marie Faller and Hubert Zangl

This paper aims to investigate the usability of the non-iterative monotonicity approach for electrical capacitance tomography (ECT)-based object detection. This is of particular…

Abstract

Purpose

This paper aims to investigate the usability of the non-iterative monotonicity approach for electrical capacitance tomography (ECT)-based object detection. This is of particular importance with respect to object detection in robotic applications.

Design/methodology/approach

With respect to the detection problem, the authors propose a precomputed threshold value for the exclusion test to speed up the algorithm. Furthermore, they show that the use of an inhomogeneous split-up strategy of the region of interest (ROI) improves the performance of the object detection.

Findings

The proposed split-up strategy enables to use the monotonicity approach for robotic applications, where the spatial placement of the electrodes is constrained to a planar geometry. Additionally, owing to the improvements in the exclusion tests, the selection of subregions in the ROI allows for avoiding self-detection. Furthermore, the computational costs of the algorithm are reduced owing to the use of a predefined threshold, while the detection capabilities are not significantly influenced.

Originality/value

The presented simulation results show that the adapted split-up strategies for the ROI improve significantly the detection performance in comparison to the traditional ROI split-up strategy. Thus, the monotonicity approach becomes applicable for ECT-based object detection for applications, where only a reduced number of electrodes with constrained spatial placement can be used, such as in robotics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Purpose

The paper aims to illustrate a numerical technique to calculate fields and inductances of rotating electrical machines.

Design/methodology/approach

The technique is based on an integral formulation of the nonlinear magnetostatic model in terms of the unknown magnetization. The solution is obtained by means of a Picard-Banach iteration whose convergence can be theoretically proved.

Findings

The proposed method has been used to build a model of a large turbine generator. In particular, the influence of end effects on flux linkages has been computed. It has been demonstrated that the 2D solution underestimates the flux linkages as well as the no load voltage of 2 per cent, while the leakage fluxes are computed by the 2D solution with errors as high as 20 per cent.

Originality/value

The method is advantageous in comparison to standard methods.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Purpose

This paper aims to investigate the effect of centrifugal disk finishing (CDF) technique on the surface and subsurface characteristics of the fused deposited modeling (FDM) parts in both theoretical and experimental aspects. From theoretical aspect, a novel theoretical model is developed as a function of layer deposition orientation, layer thickness, finishing working time, density ratio and hardness ratio to estimate the surface roughness profile of FDM part at different finishing conditions and finishing time intervals. Meanwhile, from the experimental aspect, an experimental campaign was performed under different mechanical and mechanical-chemical finishing conditions to verify the theoretical model and also assess the surface and subsurface characteristics of the polished parts.

Design/methodology/approach

The theoretical model commences with an approximation of surface profile of the FDM part through a sequence of parabola arcs, continues with the calculation of reference line and machined surface profile and leads to a formulation of surface roughness of as-printed and polished surface. In the experimental section, the FDM parts are polished under dry, pure water, 25% and 50% volumetric aqueous acetone solutions finishing conditions through CDF technique.

Findings

The comparison between experimental and theoretical results reveals 9% mean absolute error between theoretical and experimental results. Meanwhile, Rq reduction percentage of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 66.1%, 54.5%, 56.9% and 67.2%, respectively. The scanning electron microscopy results reveal severe layer damage in dry finishing condition, while the application of 50% aqueous acetone as a polishing solution completely eliminates layer damage. Another promising finding was sticky material phenomenon on the surface of polished part under 25% finishing condition. The Shore hardness test illustrates that the surface hardness improvement of the polished parts under dry, pure water, 25% and 50% aqueous acetone solutions finishing conditions are 8.4%, 2.25%, 4.36% and 10.8%, respectively. The results also revealed that the dimension variation of polished parts under dry, pure water, 25% and 50% aqueous acetone solutions are 0.634%, 0.525%, 0.545% and 0.608%, respectively. The edge profile radius of the as-printed part is 134 µm, while the edge profiles radius of the polished parts under dry, pure water, 25% aqueous acetone solution and 50% aqueous acetone solution are 785.5 µm, 545.5 µm, 623.5 µm and 721.5 µm, respectively, at the polishing time of 720 min.

Originality/value

This paper fulfills an identified need to study the benefits of the mechanical-chemical polishing technique in comparison to mechanical and chemical polishing strategy of the FDM parts for the first time. Beside the experimental campaign, the novel analytical formulation of surface roughness as a function of mechanical properties of abrasive media and FDM part and finishing specifications provides a valuable insight in the case of material-removal processes.

Article
Publication date: 1 September 1999

Massimiliano de Magistris and Alessandro Formisano

The identification of magnetic field profiles is crucial in many applications where a direct measurement is difficult. We discuss here a technique, based on the injection of…

Abstract

The identification of magnetic field profiles is crucial in many applications where a direct measurement is difficult. We discuss here a technique, based on the injection of charged particles in the region under examination, which promises to be an innovative and effective tool in the analysis of 1‐D field profiles in high current plasma discharges. After the decription of the inverse problem related to the field construction, we consider a suitable discrete identification scheme, and analyze some properties of the latter. The field map in the interest region is reconstructed via a minimization procedure, which identifies the coefficient of a well‐suited expansion for the field. In particular, we discuss the precision and robustness of the identification procedure, with respect to the chosen optimization scheme, the amount of data, the order in the field expansion, and the influence of noise on the data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 July 2009

C. Wallinger, D. Watzenig, G. Steiner and B. Brandstätter

The purpose of this paper is to demonstrate improvement of the accuracy of electrical tomography reconstruction by incorporation of a priori knowledge into the inverse problem…

Abstract

Purpose

The purpose of this paper is to demonstrate improvement of the accuracy of electrical tomography reconstruction by incorporation of a priori knowledge into the inverse problem solution.

Design/methodology/approach

The fusion of two different inversion algorithms capable of real‐time operation is discussed, namely a non‐iterative monotonicity‐based approach, determining the a priori knowledge and an iterative Gauss‐Newton (GN)‐based reconstruction algorithm. Furthermore, the method is compared with the unmodified algorithms themselves by means of reconstructions from simulated inclusions at different noise levels.

Findings

The accuracy of the inverse problem reconstructions, especially at the boundary regions of the unknown inclusions, benefit from the investigations of incorporating a priori knowledge about material values and can be considerable improved. The monotonicity method itself, which has low complexity, provides remarkable reconstruction results in electrical tomography.

Research limitations/implications

The paper is applied to simulated discrete two‐phase scenarios, e.g. gas/oil mixtures. In a further step the method would be tested with measured data. Moreover, investigations have to be carried out in order to make the monotonicity‐based reconstruction principle more robust against disturbing artifacts.

Originality/value

The fusion of the non‐iterative monotonicity‐based method with the GN‐based algorithm demonstrates a novel approach of improving the reconstruction accuracy in electrical tomography.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 50